Identification of DNA-binding proteins that recognize a conserved type I repeat sequence in the replication origin region of Tetrahymena rDNA.

نویسندگان

  • A R Umthun
  • Z Hou
  • Z A Sibenaller
  • W L Shaiu
  • D L Dobbs
چکیده

An origin of DNA replication has been mapped within the 5' non-transcribed spacer region of the amplified macronuclear rRNA genes (rDNA) of Tetrahymena thermophila. Mutations in 33 nt conserved AT-rich Type I repeat sequences located in the origin region cause defects in the replication and/or maintenance of amplified rDNA in vivo. Fe(II)EDTA cleavage footprinting of restriction fragments containing the Type I repeat showed that most of the conserved nucleotides were protected by proteins in extracts of Tetrahymena cells. Two classes of proteins that bound the Type I repeat were identified and characterized using synthetic oligonucleotides in electrophoretic mobility shift assays. One of these, ds-TIBF, bound preferentially to duplex DNA and exhibited only moderate specificity for Type I repeat sequences. In contrast, a single-stranded DNA-binding protein, ssA-TIBF, specifically recognized the A-rich strand of the Type I repeat sequence. Deletion of the 5' or 3' borders of the conserved sequence significantly reduced binding of ssA-TIBF. The binding properties of ssA-TIBF, coupled with genetic evidence that Type I sequences function as cis-acting rDNA replication control elements in vivo, suggest a possible role for ssA-TIBF in rDNA replication in Tetrahymena.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Conserved cis- and trans-acting determinants for replication initiation and regulation of replication fork movement in tetrahymenid species.

The rDNA minichromosomes of Tetrahymena thermophila and Tetrahymena pyriformis share a high degree of sequence similarity and structural organization. The T.thermophila 5' non-transcribed spacer (5' NTS) is sufficient for replication and contains three repeated sequence elements that are conserved in T.pyriformis , including type I elements, the only known determinant for replication control. T...

متن کامل

Comparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species

Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...

متن کامل

Characterization of a novel origin recognition complex-like complex: implications for DNA recognition, cell cycle control, and locus-specific gene amplification.

The origin recognition complex (ORC) plays a central role in eukaryotic DNA replication. Here we describe a unique ORC-like complex in Tetrahymena thermophila, TIF4, which bound in an ATP-dependent manner to sequences required for cell cycle-controlled replication and gene amplification (ribosomal DNA [rDNA] type I elements). TIF4's mode of DNA recognition was distinct from that of other charac...

متن کامل

Cloning yeast telomeres on linear plasmid vectors.

We have constructed a linear yeast plasmid by joining fragments from the termini of Tetrahymena ribosomal DNA to a yeast vector. Structural features of the terminus region of the Tetrahymena rDNA plasmid maintained in the yeast linear plasmid include a set of specifically placed single-strand interruptions within the cluster of hexanucleotide (C4A2) repeat units. An artificially constructed hai...

متن کامل

Functional mapping and DNA sequence of an equine herpesvirus 1 origin of replication.

The genome of equine herpesvirus 1 (EHV-1) defective interfering (DI) particle DNA originates from discrete regions within the standard (STD) EHV-1 genome: the left terminus (0.0 to 0.04 map units) and the inverted repeats (0.78 to 0.79 and 0.83 to 0.87 map units of the internal inverted repeat; 0.91 to 0.95 and 0.99 to 1.00 map units of the terminal inverted repeat). Since DI DNA must contain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 22 21  شماره 

صفحات  -

تاریخ انتشار 1994